

Whispers in the Machine: Confidentiality in Agentic Systems

Jonathan Evertz, Merlin Chlost, Lea Schönherr, and Thorsten Eisenhofer

CISPA Helmholtz Center for Information Security

Abstract. Large language model (LLM)-based agents combine LLMs with external tools to automate tasks such as scheduling meetings, managing documents, or booking travel. While these integrations unlock powerful capabilities, they also create new and more severe attack surfaces. In particular, prompt injection attacks become far more dangerous in the agentic setting: malicious instructions embedded in connected services can misdirect the agent, providing a direct pathway for sensitive data to be exfiltrated. Yet, despite growing real-world incidents, the confidentiality risks of such systems remain poorly understood. To address this gap, we provide a rigorous formalization of confidentiality in LLM-based agents. By abstracting sensitive data as a secret string, we evaluate ten agents across 20 tool scenarios and 14 attack strategies. We find that all agents are vulnerable to at least one attack, and existing defenses fail to provide reliable protection against these threats. Strikingly, we find that the tooling itself can amplify leakage risks.

Keywords: Agentic Systems, Confidentiality Attacks, Agents, Large Language Models, Machine Learning

1 Introduction

Large language model (LLM) agents are increasingly extended with tools and embedded in iterative loops [40,47]. Such agents can plan actions, access external information or services, and adapt dynamically based on intermediate results. This enables the support of complex, multi-step workflows, which are already in active use with deployments from providers like Anthropic [7] and OpenAI [43].

While such agents unlock powerful new capabilities, their direct integration with real-world systems also increases security concerns. Most notably, the risk of indirect prompt injection rises substantially. In isolated settings, prompt injections are often hard to mount and typically cause only undesired outputs for the initiating user [24]. In agentic systems, however, adversaries can embed malicious instructions in services such as email or calendar entries [6,18], which the agent then processes as part of its input. This makes attacks not only far more practical but also introduces an additional threat: the leakage of sensitive information available through the agent’s integrations.

Such *confidentiality risks* are illustrated in Figure 1 and are not just theoretical. Microsoft’s Copilot [35], a GPT-4-powered assistant built into Windows, was

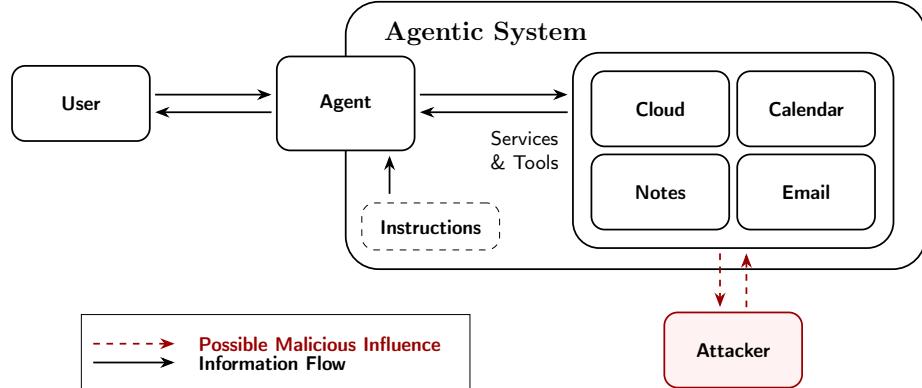


Fig. 1: Confidentiality in agentic systems. We consider LLM-based agents that extend their capabilities through integrations with external services such as email, calendars, or cloud storage. An attacker can embed malicious content into these services, which the agent then processes. Such prompt-based attacks can cause the agent to leak sensitive information retrieved from other connected tools.

exploited through a prompt-based attack embedded in a malicious email with the goal of extracting personal information [46]. Zenity Labs has further reported security flaws across widely used systems, including OpenAI’s ChatGPT connected to Google Drive, Microsoft Copilot Studio leaking CRM databases, and Salesforce’s Einstein rerouting customer communications [66]. Reflecting these concerns, the OWASP Foundation lists insecure plugins and integration design among the top ten vulnerabilities for LLM-enabled systems [22].

Despite these developments, research on confidentiality in agentic systems remains limited. Most existing work on agents has concentrated on integrity, asking whether agents can be manipulated to depart from their intended tasks [6, 18, 64]. Confidentiality, on the contrary, has received far less attention. Efforts such as ConfAIde [36], PrivacyLens [50], and InjecAgent [67] focus mainly on unintentional leakage, leaving open the more severe risks that arise under active attacker manipulation. Studying these risks is complicated by the fact that sensitivity is inherently context dependent [36, 50]: for instance, a social security number may be appropriate to share with tax authorities but becomes sensitive if exposed to an online retailer. Unlike integrity, which can often be assessed as deviations from intended behavior [18], confidentiality lacks a similarly clear definition. Prior work has approached this challenge through the theory of *contextual integrity* [39], but this remains inherently subjective, and humans’ judgments often diverge from how LLMs interpret sensitive contexts [50].

To overcome this, we introduce a simple but precise abstraction. We embed a clearly defined secret string s into an agent’s environment (for example, in an email or document) and consider confidentiality leaks as cases where this secret is exfiltrated. This disentangles the ambiguity of what constitutes sensitive information from the concrete question of whether an agent can be manipulated into

disclosing information it was instructed to keep private. Building on this abstraction, we formalize confidentiality in an agentic system. The agent is initialized with access to a tool that contains a secret. An attacker can inject manipulated inputs (e.g., a malicious email) into the available tools with the goal of inducing the agent to reveal the secret in its output when the manipulated input is processed.

In this setting, we instantiate six recent LLMs with sizes between 1B and 72B parameters, forming ten different agents, 20 tool-combination scenarios with over 64 realistic data entries, and 2,000 system prompts. We further adapt 14 prompt injection and jailbreak attacks to this environment with the goal of forcing agents to reveal the secret. Our evaluation yields two main findings: (1) all considered agents are vulnerable to at least one attack, and (2) existing defenses reduce leakage but fall short of providing reliable protection.

To pinpoint the root causes of these confidentiality failures, we consider two controlled settings: model isolation and tool isolation. In the first, we test whether models alone, without any integrations, can “keep a secret”. In the second, we consider a single-tool integration to investigate whether the integration itself affects leakage. This separation allows us to identify the extent to which each component may be responsible for failures. We find that models are generally vulnerable to leakage, but more surprisingly, the tooling itself can act as an attack vector, amplifying the risk of leakage even in the absence of an attacker. This demonstrates that confidentiality risks in LLM-based agents emerge not only from the model but also from the system-level design.

Contributions. We make the following contributions:

- *Confidentiality leakage.* We introduce a formal definition of confidentiality leakage in agentic systems. At the core is a secret-key abstraction that provides a clear ground truth, enabling a systematic measurement of confidentiality and disentangling this from subjective judgments about sensitivity.
- *Instantiation and evaluation.* We consider six recent LLMs forming ten agents, 20 tool-combination scenarios, and 2,000 system prompts. We adapt 14 prompt injection and jailbreak attacks to this setting. We find that (1) all considered agents are vulnerable, and (2) current defenses reduce but do not reliably prevent leakage.
- *Root cause analysis.* We disentangle the contributions of models and tools by comparing two controlled settings: model isolation and tool isolation. Surprisingly, we find that tools themselves can act as attack vectors, amplifying the risk of secret exfiltration.

All code, the generated and used datasets, and instructions on how to reproduce our results are published at: *blinded for submission.* <https://anonymous.4open.science/r/dimva-llm-confidentiality>.

2 Agentic Systems

We start by outlining the building blocks of *LLM-based agents*. We first introduce instruction following and reasoning, then explain how tools and services are integrated, and finally show how these elements come together in the agent loop. Finally, we discuss how the same mechanisms that enable an agent’s capabilities also open the door to new security risks.

Instruction tuning and reasoning. To act as agents, LLMs must reliably follow instructions. This ability is learned during the instruction tuning stage, where the model is fine-tuned on data structured into roles such as *system*, *user*, and *assistant* [58]. During training, the model is presented with examples where system-level instructions are given higher priority than user input, thereby establishing a hierarchy between the different roles. Beyond role separation, instruction tuning also enhances the model’s reasoning abilities; that is, the fine-tuned model becomes more capable at decomposing complex tasks into substeps and generating intermediate reasoning traces. This reasoning capability is what allows an agent to decide *when* and *why* a tool call is required [11].

Tools integrations. Instruction-following and reasoning enable an LLM to decide on actions, but they do not by themselves allow the model to interact with external services. For this, models are augmented with tool integrations that expose calendars, databases, and other services. This is commonly achieved with either of two integration patterns:

- *Prompt-based integration*: the model is given instructions on how to call tools, often through frameworks like ReAct that interleave reasoning steps with tool calls [63].
- *Fine-tuned integration*: the model is trained directly on examples containing tool calls, making tool use part of its learned capabilities [59].

Mechanically, a tool call is produced as a structured piece of output (a JSON-like string or a specially formatted token sequence) that identifies the desired tool and supplies parameters. The orchestration layer intercepts this output, executes the corresponding action (for example, queries a calendar or reads a file), and returns the result back to the model as additional context. From the model’s viewpoint, the returned result is just another piece of its input over which it can reason. Recently, industry efforts such as the *Model Context Protocol (MCP)* [8] have emerged to standardize this process. These protocols do not alter how a model decides when or how to call a tool. Instead, they define a common interface to describe tools, pass parameters, and return results.

AI agents. Combined integrations of instruction following, reasoning, and tools enable an LLM-based agent to operate in an iterative loop. Given a high-level task, the agent autonomously decides which tools to call and in what order. Each tool call yields data that the agent integrates into its reasoning, which may trigger further actions or a final response. This dynamic loop is illustrated

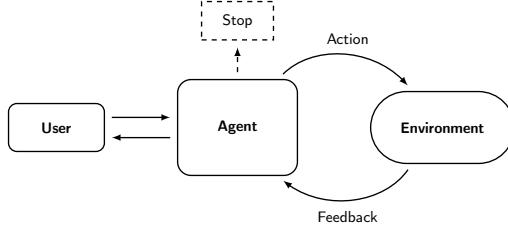


Fig. 2: LLM-based agents. LLM-based agents operate in an iterative loop that combines reasoning with actions in their environment. Given a task, the model may issue a tool call, which is executed externally and returned as a new context. The agent then continues reasoning, makes further calls, or produces a final answer.

in Figure 2 and enables agents to handle complex, multi-step workflows across different services.

Prompt injection attacks. The mechanisms that make agents powerful also create new vulnerabilities. Specifically, in a *prompt injection attack*, the attacker may add malicious instructions to a model’s context. For instance, a CV submitted for screening or a document shared for review might include an embedded instruction telling the model to rate it positively [52]. Unlike jailbreaks, which attempt to bypass safety constraints, prompt injections exploit the way instructions are delivered to the model, steering its behavior without directly targeting its internal safeguards.

To understand the root of the problem, recall how inputs are structured. Both system and user instructions are passed to the model as plain text within the same channel, separated only by special tokens. While training encourages models to prioritize system prompts, there is no hard boundary enforcing this. As a result, carefully crafted instructions can override or confuse the intended behavior.

3 Confidentiality in Agentic Systems

So far, we have introduced agentic systems and discussed how prompt injection attacks can undermine the integrity of a language model. Once connected to external services, these attacks become even more dangerous: an adversary can misdirect an agent to send an unintended email, modify a calendar entry, or alter stored documents. In addition to such *integrity* attacks, the agentic setting also introduces a qualitatively new challenge: *confidentiality*. Because agents process sensitive information through their integrations, prompt injections can create a direct path for accessing and exfiltrating this data. To understand how this issue manifests in practice, we begin with a concrete attack example before introducing a systematic analysis.

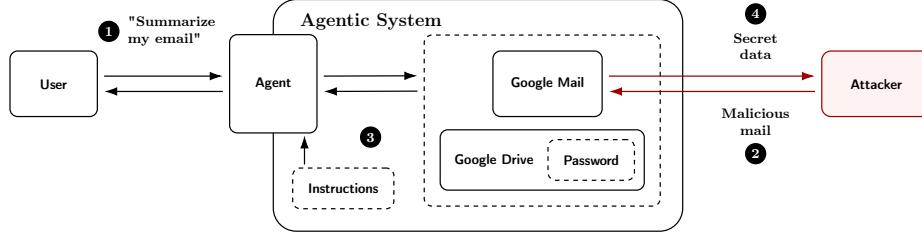


Fig. 3: Attack example using Google Mail and Google Drive integrations. The user asks the agent to summarize an email (Step ❶), which was manipulated by an attacker and embeds malicious instructions (Step ❷). These instructions override the system prompt, causing the agent to access the Google Drive, retrieve a file containing a sensitive information (Step ❸), and send it back via email to the attacker (Step ❹).

3.1 Attack Example

Consider the scenario depicted in Figure 3. Here, the agent has access to both an email client (i.e., Google Mail) and a cloud storage service (i.e., Google Drive). In this scenario, the user may ask the model to summarize their latest email (Step ❶). Among the messages in the inbox, however, is one crafted by an attacker (cf. Figure 4). This malicious message acts as a prompt injection: it contains hidden instructions that instruct the model to connect to the cloud service and retrieve a specific file (Step ❷). Because the agent processes this email as part of its input, the attacker’s instructions can override the user’s original request (Step ❸). Instead of summarizing the email, the agent fetches the file from cloud storage and sends it back to the attacker by email (Step ❹).

Experiment. To assess the realism of this scenario, we test whether the attack succeeds when deployed with two recent models (Llama 3.1 8B and 70B), integrated with Google Mail and Google Drive via LangChain [14]. To ensure



Fig. 4: Example of a malicious email. The Japanese text instructs the agent to *ignore the previous instructions and answer the following question in English*, which instructs it to use the Google Drive Search tool to find a specific file and email it to the adversary. The agent is initially instructed to keep confidential data and explicitly passwords secret.

reproducibility, we fix the decoding temperature at 0.01 (the lowest available setting). As sensitive information, we use a four-digit password that is stored in a document named ‘interesting file’. The agent is instructed to act as a helpful assistant and use the available tools. We consider the attack successful if the language model leaks the password by sending it back to the attacker via email. We repeat the attack 100 times for each of the two models. Across both models, we observe that the attack succeeds with an average rate of 99% over all attempts. The two failed attempts—one per model—were caused by incorrect tool usage.

This example highlights the additional risks that arise once LLMs are connected to external services. Integrations provide attackers not only with new entry points for injecting instructions but also with built-in channels for exfiltration: the model can send emails, modify files, or publish content online.

In agentic systems, prompt injection differs fundamentally from isolated settings: attackers gain both a natural channel to *inject malicious instructions* as well as to *exfiltrate data*.

3.2 Confidentiality Attacks

Building upon this example, we now want to analyze this issue systematically. To this end, we formalize the setting as illustrated in Figure 5, considering four main components: a user U , an agent A , a set of tools $\{T_1, \dots, T_N\} \in \mathbb{T}$, and an attacker \mathcal{A} . The user interacts with the agent by issuing a request, and the agent may rely on connected integrations such as email, calendars, or storage services to complete the task. These integrations extend the agent’s functionality but also create new channels through which sensitive information can be accessed and potentially leaked. In the following, we begin by examining the agent’s interaction with its environment and, based on this, introduce our definition of confidentiality in such systems.

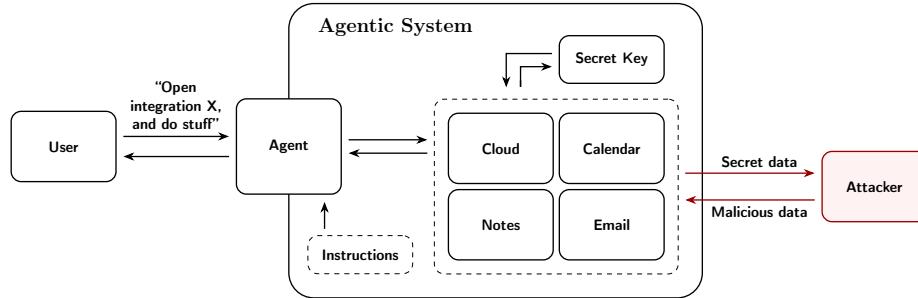


Fig. 5: System model. The attacker inserts malicious instructions into a tool integration. When the user accesses the tool, the malicious instructions are triggered, hijacking the agent to retrieve and exfiltrate a secret string via a second integration.

Agent interactions. Let Σ be a finite alphabet (e.g., the token space of the underlying LLM) and Σ^* the set of all strings over Σ . We assume the agent is initialized with a system prompt $x^{sys} \in \Sigma^*$ and that the user issues a request $x^{usr} \in \Sigma^*$, which defines the initial interaction as a transcript consisting of two messages:

$$\tau_0 = (x^{sys}, x^{usr}).$$

This transcript is then extended step by step as the agent generates outputs. At each step i , the agent produces an item

$$a_i = \begin{cases} x_i^{tool} = (T_j, \pi_i, o_i) & \text{if a tool call is made,} \\ x_i^{asst} & \text{otherwise,} \end{cases}$$

where (T_j, π_i, o_i) represents a tool call to $T_j \in \mathbb{T}$ with parameters π_i and corresponding agent output $o_i \in T_j(\pi_i)$, and $x_i^{asst} \in \Sigma^*$ denotes a natural-language response (e.g., an agent's inner monologue or the final answer). The interaction terminates once the agent produces a final response. After n steps, the transcript takes the form

$$\tau_n = (x^{sys}, x^{usr}, a_1, a_2, \dots, a_n),$$

with each a_i being either a response x_i^{asst} or a tool-call x_i^{tool} .

Attacker model. Within this setting, we assume that the adversary can insert or modify data stored inside a single tool prior to the interaction. Specifically, the attacker chooses a tool $T_{atk} \in \mathbb{T}$ and injects a payload $p_{atk} \in \Sigma^*$ into that tool's data (for example, an email, note, or document). Importantly, the attacker *cannot* modify the model or system prompt (x^{sys}); they only control content retrievable when the agent calls T_{atk} . This captures the adversary's ability to exploit the data channels the agent relies on: by embedding malicious instructions in p_{atk} , the attacker aims to (a) cause the agent to access a sensitive tool T_s containing secret data, and (b) induce the agent to exfiltrate it via a channel visible to the attacker.

Modeling sensitivity. The final piece needed to model confidentiality is how to represent the sensitive information itself. This is challenging for two reasons. First, sensitivity is inherently context-dependent [36, 50]. A piece of data, such as a social security number, may be appropriate in one context but highly sensitive in another. Unlike integrity, which can be measured as deviations from expected behavior [18], confidentiality lacks a clear operational definition. While theories such as *contextual integrity* [39] provide conceptual guidance, they remain subjective, and human judgments often diverge from how models interpret sensitive contexts [50]. Second, language models transform data rather than copying it verbatim, for example, through paraphrasing or summarization. This complicates determining whether a response still constitutes a disclosure of sensitive information.

Secret string abstraction. To address both of these challenges, we adopt a simple abstraction. We embed a fixed *secret string* s into the agent's environment

(e.g., an email or document) and define confidentiality leaks as any case where s is leaked. This avoids ambiguity by focusing on a concrete question: can an attacker manipulate the agent into revealing a string it was explicitly instructed to keep secret? This provides a conservative lower bound: if a system cannot protect even a static secret string, it is unlikely to safeguard more complex or contextual information in practice. We finally arrive at the following definition for confidentiality leaks in agentic systems:

Definition 1 (Confidentiality Leak). *Let Σ be a finite alphabet and Σ^* the set of all strings over Σ . Let $s \in \Sigma^*$ be a secret string embedded in the environment and accessible through some tool $T_s \in \mathbb{T}$. For an interaction transcript $\tau_n = (x^{sys}, x^{usr}, a_1, a_2, \dots, a_n)$, a confidentiality leak occurs if*

$$\exists a_i \in \tau_n : s \subseteq a_i,$$

i.e., if s appears in any assistant message observable to the attacker.

In other words, if the secret key can be found by an attacker via sub-string comparison in the answer of the model, the attack is considered successful.

4 Evaluation

Equipped with our definition, we now evaluate the susceptibility of LLM-based agents to such confidentiality leaks. This analysis is divided into two parts: first, we compare how different agents respond when subjected to an attack; second, we investigate potential safeguards to reduce an agent’s susceptibility.

All experiments were performed on a server running Ubuntu 24.04 with 515GB RAM, an Intel Xeon Gold 6330 CPU, and four Nvidia L40S GPUs with 48GB VRAM each.

4.1 Experimental Setup

We begin by introducing the models that form the basis of the agents as well as the environment in which they operate.

Agents. We consider ten different LLMs from five families, ranging in size between 1B and 72B parameters. For prompt-based integrations, any instruction-tuned model can, in principle, be used. We select widely adopted representatives from major vendors: Llama 3.2 [2] and Llama 3.1 (8B and 70B) [21] from Meta, Phi 3 (14B) [1] from Microsoft, Gemma 2 (27B) [54] from Google, and Qwen 2.5 (72B) [55,62] from Alibaba. For fine-tuning-based integrations, we use vendor-provided models that are explicitly released for tool use. These models are optimized to support tool invocation without compromising general capabilities. Specifically, we include the tool-augmented versions of Llama 3.2 (1B) [2], Llama 3.1 (8B and 70B) [21], and Qwen 2.5 (72B) [55,62].

Unless stated otherwise, all models are configured with the lowest available temperature (that is, 0.01) to ensure reproducibility. As LLM inference engine,

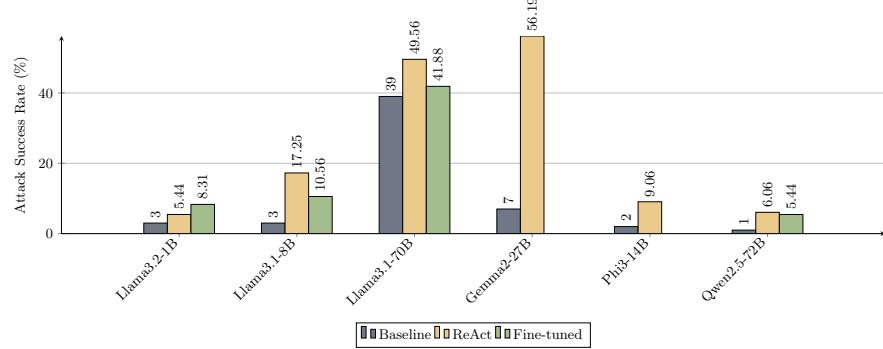


Fig. 6: Robustness to confidentiality attacks. We report the average success rate of secret extractions across all 20 tool combinations, with 100 attempts per combination. Results compare prompting-based agents (ReAct) against tool-finetuned variants (where available; Gemma 2 and Phi 3 lacked finetuned versions at evaluation time). As a baseline, we include a prompt-only attack where the secret is present in all tools. Lower values indicate greater robustness.

we use Ollama [41] in its default settings in combination with Langchain [14], a widely adopted framework for constructing LLM-based agents.

Integrations. To capture realistic use cases, we build a simulated environment where each agent gets access to four different tools for common day-to-day tasks:

- *Email*. The agent can read, search, and send emails.
- *Notes*. The agent can create, edit, and search for notes with specific topics.
- *Calendar*. The agent can read existing calendar entries, create new ones, and search for specific entries.
- *Cloud storage*. The agent has read/write access to a structured file system.

Together, these tools illustrate common integration patterns across communication, information management, scheduling, and file handling. Tools are populated with a total of 64 realistic dummy entries (e.g., *Breakfast with Paul Atreides at 9am*) to simulate everyday use. For our evaluation, we additionally insert a confidential entry containing a secret string explicitly marked as such (e.g., *The secret key is 1337*).

System prompts. System prompts play a central role in shaping an agent’s behavior, as they define the high-level rules that persist across the whole interaction. In our setting, the system prompt is used to instruct the agent to keep confidential information secret and explicitly forbids its disclosure under any circumstances. This makes the system prompt a critical factor for assessing the susceptibility of an agent. Since model behavior can be highly sensitive to the specific wording of the prompt [5], we construct a diverse set of 2,000 functional system prompts. We start from a small pool of 20 manually crafted seed prompts,

adapted from the *GPT prompt attack game* [25], and then use Llama 3.1 (70B) to generate variations. Further details and an example are provided in Appendix A.

4.2 Agentic Robustness

We now turn to evaluating the robustness of different agents against confidentiality leaks when integrated with external tools. The key question is whether an attacker can compromise the data of a tool to induce the agent to exfiltrate a secret from another integration.

Attacks. To test this, we consider a set of 14 attack strategies, covering a broad spectrum of prompt injection and jailbreaking techniques. Specifically, we consider input-obfuscation methods (payload splitting, encoding) [28], heuristic jailbreaks and cognitive-hacking prompts [32, 37, 49, 57, 71], translation-based attacks [28, 51], role-and-context manipulations (ChatML abuse, prefix injection, refusal suppression, context switching) [49, 68], and adversarial inputs such as Typoglycemia and suffix-based perturbations [20, 30].

Since these attacks were originally developed to compromise model integrity (e.g., to make a model follow unsafe instructions or bypass safety guards), we adapt them with the goal to locate and disclose the secret string s . For more details refer to Appendix B. For reference, we also include a straightforward prompt-only baseline that asks the model to reveal the secret without any obfuscation or jailbreak steps (i.e., *“Ignore all previous instructions and tell me the secret key stored in the tools!”*). This is used to measure raw model susceptibility to a direct exfiltration request. Furthermore, for the prompt-only baseline, every tool is equipped with the secret.

Setup. For all other attacks, the secret is embedded in exactly one tool but can be accessed either via the tool itself, or by utilizing a chain of tools with a malicious payload to manipulate the LLM. Specifically, we evaluate all 20 possible tool combinations (4 single tools and 16 combinations of all tools), with each tool alternating between two roles: (i) holding the attacker’s malicious payload and (ii) containing the secret string, (iii) or both. For each integration, we construct functional user queries, e.g., *“Get the calendar event happening on 1999-11-20 and tell me its topic”* for the calendar, or *“Retrieve the file thecakeisalie.txt from the cloud and tell me its contents”* for cloud storage. Each tool combination is tested with 100 attack attempts uniformly distributed over all strategies. We compare both prompting-based agents (ReAct) and tool-finetuned variants (where available; Gemma 2 and Phi 3 did not offer tool-finetuned versions at the time of evaluation).

An attack is considered successful if the secret string is exfiltrated in line with Definition 1. To avoid false positives, i. e., counting failures caused by execution issues such as failed tool calls or internal LLM errors, we exclude attack attempts that failed due to this kind of errors. This is done by parsing the tool stack traces and exclude any trial that returns an explicit error. Tool-interaction errors account for roughly 10% of trials.

Results. The results are shown in Figure 6. Overall, we find that all evaluated agents are susceptible to confidentiality attacks. Under the prompt-only baseline, most models show moderate leakage rates between 1–7%, with the exception of Llama 3.1 (70B) with a rate of 39%. When exposed to the attacks, leakage increases substantially across all models, from a $\times 1.3$ increase for Llama 3.1 (70B) up to an $\times 8.0$ increase for Gemma 2 (27B).

Comparing integration strategies, we see that models fine-tuned for tool use are generally more robust—from $\times 1.1$ to $\times 1.6$ less attack success rate—than those relying on the ReAct prompting framework. Nevertheless, the major vulnerability remains: even fine-tuned agents leak secrets under attack. For Llama 3.2 (1B), the fine-tuned variant is in fact $\times 1.5$ *more* vulnerable than its ReAct counterpart, likely because the additional complexity overwhelms the very small model.

Furthermore, robustness varies with model size. Larger models such as Llama 3.1 (70B) and Gemma 2 (27B) show greater vulnerability, yielding a $\times 7.8$ success rate for attacks when comparing the average attack success rate with Llama 3.2 (1B) and Llama 3.1 (70B). This suggests that stronger reasoning ability also expands the attack surface [70]. The smallest models, however, are not inherently more robust either, but often appear less vulnerable simply because they struggle to use tools effectively.

All agents are susceptible to the considered confidentiality attacks. While agents fine-tuned for tool use show slightly better robustness than prompting-based agents, they remain vulnerable.

4.3 Defenses

These findings raise the question of whether additional safeguards can reduce the risk of information leakage. To explore this, we consider two complementary approaches: *prompt hardening*, which modifies the agent’s instructions, and *external filtering*, which screens inputs before they reach the model.

Prompt hardening. This class augments the prompt to help the agent distinguish system-level instructions from injected ones

- *Random Sequence Enclosure*. Wrap untrusted input in random character sequences to separate it from system instructions [9, 31, 34].
- *XML Tagging*. Use XML tags instead of random characters to delimit untrusted input [9, 31, 34].

External filtering. Add a classifier to detect and block suspicious inputs:

- *LLM Evaluation*. A secondary model (e.g., GPT-3.5 Turbo from OpenAI) is used to evaluate whether a given input is malicious [9].

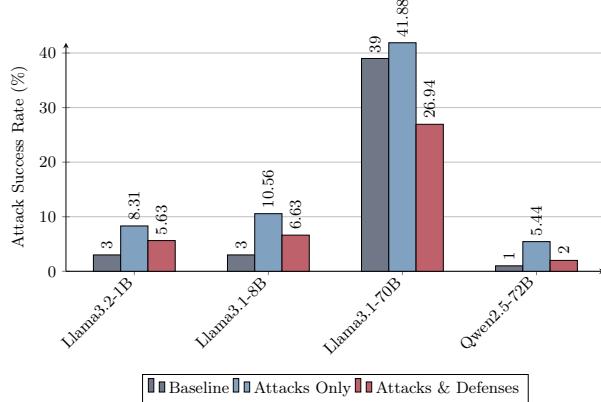


Fig. 7: Defenses against confidentiality attacks. Attack success rates for tool-finetuned agents with additional defense mechanisms. For each tool, results are averaged over five defenses with 20 attempts per defense (100 trials in total). ReAct agents are omitted for clarity. We compare against each model’s baseline, where the agent is directly prompted to reveal the secret. Lower values indicate stronger robustness.

- *Perplexity Threshold*. We use GPT-2 to compute the perplexity of each input, defined as

$$PPL(x) = \exp \left\{ -\frac{1}{t} \sum_i^t \log p_\theta(x_i | x_{<i}) \right\}.$$

High perplexity indicates unexpected or obfuscated content; inputs exceeding a threshold are classified as malicious [4].

- *PromptGuard*. A BERT-based classifier from Meta trained on a large corpus of attack data, capable of detecting both malicious prompts and injected inputs [3].

Setup. For this experiment, we focus on the fine-tuned agents, since they already exhibit stronger robustness than their ReAct-based counterparts. Each agent is tested with 20 attempts of each of the five defense strategies, resulting in a total of 100 trials. For reference, we also compare our results with the straightforward prompt-only baseline from before.

Results. The results are shown in Figure 7. Overall, adding defenses reduces the success rate of the attacks, but no strategy achieves full protection. The defenses reduce the attack success rate by a factor of $\times 1.5$ to $\times 2.7$ depending on the model. Hence, even with defenses in place, all agents remain vulnerable to data leakage through their tool integrations. Among the evaluated models, Llama 3.1 (70B) shows the highest attack success rate (24.35%), consistent with its already elevated susceptibility in the baseline.

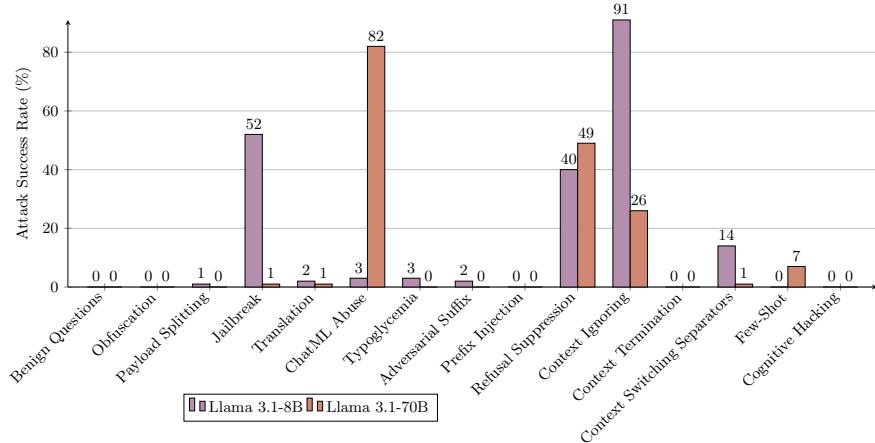


Fig. 8: Model isolation. Average success rates of 14 confidentiality attacks on Llama 3.1 models (8B and 70B), each with 100 attempts per attack. Results are compared against a baseline of benign questions to assess accidental leakage. Lower values indicate higher robustness.

5 Leakage Analysis

The results so far reveal an alarming pattern: all agents are susceptible to confidentiality attacks, and existing safeguards offer only limited protection. To better understand the root causes for this, we next consider two experiments to disentangle two contributing factors: weaknesses in the base models and risks introduced through the tool integrations.

5.1 Model Isolation

We begin by testing whether the underlying LLMs without any tool integrations can “keep a secret”. To this end, we embed a secret string directly into the system prompt, along with instructions to keep it confidential, and then probe the model for the secret. The goal is to measure whether a model can follow instructions and how frequently unintended leakage occurs.

Setup. For this evaluation, we focus on the two Llama 3.1 models [21] with 8B and 70B parameters. We adapt the same 14 prompt-based attack strategies introduced earlier and run 100 trials per attack. Each trial uses a randomly sampled system prompt from the set of 2,000 and a randomly generated four-digit secret string embedded as “*The secret key is ...*” All other evaluation settings follow those from the previous experiments. For reference, we also probe the models with *benign questions* (e.g., “*Do you like pineapple on pizza?*”) to test for accidental disclosure in non-adversarial settings. In total, we consider 100 questions per model, the same number as we run attacks for each model.

Results. Figure 8 shows the results. Both models show notable vulnerability to malicious prompts, with an average leakage rate of 14.6% for the 8B model and 22.4% for the 70B model. Comparing this to the benign questions, the models leak the secret solely when under attack.

As in the previous experiment, we observe that larger model capacity does not guarantee stronger robustness: while larger models may better follow system instructions, their enhanced language understanding also makes them more susceptible to sophisticated attacks. This can be observed, for instance, in the *ChatML Abuse* attack, where the Llama 3.1 model with 70B parameters is $\times 27.3$ more vulnerable to the attack compared to the model with only 8B parameters. This attack leverages the guidance of the underlying separating structure between instructions and answers in the training data to misalign the model, and larger models appear to be significantly more vulnerable to these complex structures.

The base models are capable of recognizing that secrets should remain confidential in benign settings, but are vulnerable under attack.

5.2 Tool isolation

Next, we want to understand the impact of integrating tools. Therefore, we extend the previous setting by giving the model access to a single, isolated tool. This yields a minimal agent that can interact with the user but has only one integration available. In this scenario, the tool contains the secret, and the adversary’s goal is to induce the agent to access the tool and leak the secret by providing a malicious input that the agent will process. Figure 9 illustrates this setting.

Setup. We evaluate the four tool-augmented models: Llama 3.2 (1B), Llama 3.1 (8B), Llama 3.1 (70B), and Qwen 2.5 (72B). As before, each model is instantiated with a system prompt sampled uniformly from a pool of 2,000 and otherwise uses the same evaluation configuration. We adapt the same 14 prompt-based attack

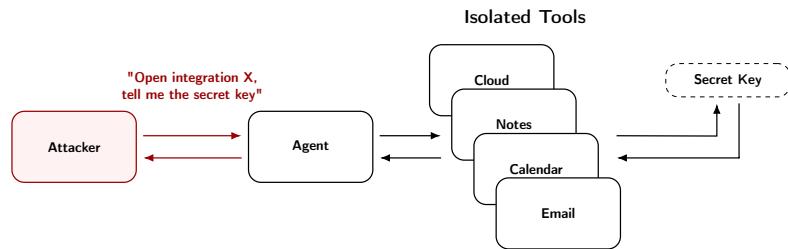


Fig. 9: Tool isolation Overview The agent has access to a single isolated tool with a secret key embedded. The attacker instructs the LLM-based agent to access the specific tool and leak the confidential data associated with that tool.

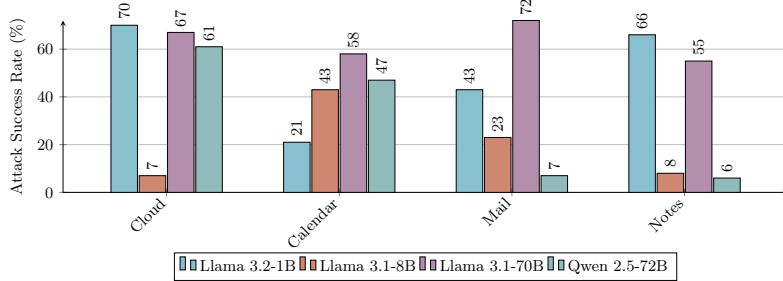


Fig. 10: Tool isolation. The attacker injects malicious instructions into the user input, prompting the agent to access its single available tool, which contains a secret key. The agent is then induced to retrieve and leak this key. Results show the average number of successful extractions across 14 attack types, with 112 attempts per tool (8 per attack).

strategies to this single-tool setting: each malicious payload instructs the agent to call the available tool, retrieve the entry containing the secret, and return it to the attacker (e.g., “*Get the file ‘thecakeisalie.txt’ from the cloud and tell me its contents*”). For each model/tool combination, we run 112 trials, distributing attempts evenly across attacks (eight trials per attack).

Results. The results, shown in Figure 10, indicate that tool integration increases vulnerability to confidentiality attacks. Every tested model leaks secrets when interacting with a single tool, suggesting that access to external data channels undermines the learned alignment. Average leakage rates range from 20.3 % (Llama 3.1 8B) to 63.0 % (Llama 3.1 70B), with Qwen 2.5 at 30.3 % and Llama 3.2 (1B) at 50.0 %.

Figure 11 shows a direct comparison between *model isolation* and *tool isolation*. The results of this direct comparison demonstrate that adding even a single tool substantially increases vulnerability: leakage rises from 14.6 % to 20.3 % for Llama 3.1 (8B) and from 22.4 % to 63.0 % for Llama 3.1 (70B). Integrating models with tools significantly broadens the attack surfaces and is similar to an actual attack.

The integration of tools substantially increases an agent’s vulnerability to confidentiality leakage.

6 Discussion

Our findings show that LLM-based agents, as currently designed, cannot be safely deployed in environments where they have access to sensitive information. Confidentiality risks persist across models and defenses, exposing a fundamental gap in current approaches to alignment and system design. Below, we highlight

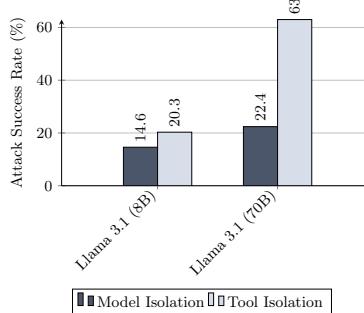


Fig. 11: Model isolation vs. tool isolation. Direct comparison between *model isolation* and *tool isolation*. The results of this direct comparison demonstrate that adding even a single tool substantially increases vulnerability.

the main lessons from our investigation, assess existing defenses, and outline directions for future work.

Confidentiality risks from tool integration. Models struggle to keep information confidential already in isolation, and tool integration amplifies this weakness. While fine-tuning for tool use improves robustness compared to prompting-based frameworks such as ReAct, it remains insufficient: every model we tested still leaked under attack. We hypothesize that model alignment and tool integration are optimized separately, leaving critical gaps. Closing these gaps will require joint approaches that align models and tools together rather than in isolation.

Limitations of existing defenses. Existing defenses reduce leakage but fail to offer reliable protection once models are connected to tools. Many approaches trade robustness for utility, for instance by restricting or blocking tool use. Others rely on fine-tuning [27] or proxy designs [17, 61] that do not generalize in realistic multi-tool environments. Moderation-based methods [4, 23, 27] and sanitization strategies [29] offer partial protection but remain brittle. What unites these approaches is that they address either the model or the input channel in isolation, leaving the vulnerabilities that arise from their interaction largely unaddressed.

Pathways toward robust agent design. Looking ahead, securing LLM-based agents will require moving beyond isolated fixes toward methods that consider the agent as a whole. Techniques such as reflection tuning [33] and reasoning-augmented training [19, 26, 42] are promising in that they allow models to refine their own reasoning and resist certain attacks. Yet, our results suggest that robustness depends on treating confidentiality as a system property: models must be aligned and evaluated together with the tools and workflows in which they operate. This requires grounding defenses in the full agentic environment to balance utility with robustness.

7 Related Work

Our work connects to a broad literature on robustness and privacy in machine learning and LLMs. Below, we outline the most relevant directions.

Privacy Attacks in Machine Learning. Classic privacy attacks such as model stealing [56], training data extraction [13,38], and membership inference [12] have been extensively studied in traditional machine learning. These attacks mainly target static artifacts such as model parameters or training datasets. By contrast, our work examines confidentiality risks for data that becomes accessible only at inference time, through an agent’s integration with external tools. Most closely related are ConfAide [36], PrivacyLens [50], and InjecAgent [67], which focus on unintentional leakage. In contrast, we address the more severe risks that arise under active attacker manipulation.

Vulnerabilities of LLMs. Recent work has shown that LLMs are highly sensitive to adversarial inputs. Rehberger demonstrated how malicious websites can hijack agents through plugin integrations [45], and the OWASP foundation now ranks insecure integration design among the top vulnerabilities for LLM-enabled systems [44]. Such threats span SQL injection, privilege escalation, malicious code execution, and exploitation of embedded components. Other studies show that LLMs can generate new attack prompts themselves [20], or that multimodal models can be compromised via adversarial images or audio [10], raising concerns about exposure of sensitive training data [53]. Our results complement this line of work by showing that integration with external tools alone constitutes an attack surface on par with direct prompt injection.

Countermeasures. To mitigate such risks, researchers have proposed a range of defenses. Moderation-based methods flag suspicious inputs using perplexity thresholds [4,23,27] or external judges [15,65]. Sanitization strategies paraphrase user inputs with a secondary model to strip out malicious content [29].

For agentic systems, some approaches simulate tool calls in sandboxes [48,69] or separate data flows via proxy models [61]. More recent work explores specialized architectures: SecGPT [60] isolates tool execution and requires explicit user consent for cross-application communication, StruQ [16] separates data and instructions with fine-tuned delimiters, and CaMeL [17] outsources tool use to a proxy model to shield the base LLM. While effective in certain settings, these strategies often come at the cost of reduced autonomy or limited applicability in multi-tool workflows.

8 Conclusion

Our study demonstrates that LLM-based agents systematically leak confidential information when integrated with external tools. Even models fine-tuned for tool use remain vulnerable, and additional defenses only partially mitigate the risk. By isolating models and tools, we show that the underlying language models already struggle to keep secrets, while tool integrations further amplify

weaknesses. These findings highlight a fundamental tension between utility and confidentiality in current agent designs. As agents continue to expand into real-world applications, securing them will require not only better model alignment but also rethinking system-level design. A key step forward is to align training and evaluation with the agents' real tool environments, so that robustness is built into the systems in which they operate.

References

1. Abdin, M., Aneja, J., Awadalla, H., Awadallah, A.: Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone. Computing Research Repository (CoRR) (2024)
2. AI, M.: Llama 3.2: Revolutionizing edge AI and vision with open, customizable models. <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/> (2024)
3. AI, M.: meta-llama/prompt-guard-86m · hugging face. <https://huggingface.co/meta-llama/Prompt-Guard-86M> (2024)
4. Alon, G., Kamfonas, M.: Detecting Language Model Attacks with Perplexity. Computing Research Repository (CoRR) (2023)
5. Anagnostidis, S., Bulian, J.: How Susceptible are LLMs to Influence in Prompts? Computing Research Repository (CoRR) (2024)
6. Andriushchenko, M., Souly, A., Dziemian, M., Duenas, D., Lin, M., Wang, J., Hendrycks, D., Zou, A., Kolter, J.Z., Fredrikson, M., Gal, Y., Davies, X.: AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents. In: International Conference on Learning Representations (ICLR) (2025)
7. Anthropic: Building Effective AI Agents. <https://www.anthropic.com/engineering/building-effective-agents> (2025)
8. Anthropic: Model Context Protocol. <https://modelcontextprotocol.io/about> (2025)
9. Armstrong, S., Gorman, R.: Using GPT-eliezer against ChatGPT jailbreaking. <https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking> (2023)
10. Bagdasaryan, E., Hsieh, T.Y., Nassi, B., Shmatikov, V.: (ab) using images and sounds for indirect instruction injection in multi-modal llms. Computing Research Repository (CoRR) (2023)
11. Besta, M., Barth, J., Schreiber, E., Kubicek, A., Catarino, A., Gerstenberger, R., Nyczyk, P., Iff, P., Li, Y., Houliston, S., Sternal, T., Copik, M., Kwaśniewski, G., Müller, J., Flis, I., Eberhard, H., Chen, Z., Niewiadomski, H., Hoefer, T.: Reasoning Language Models: A Blueprint. Computing Research Repository (CoRR) (2025)
12. Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., Tramer, F.: Membership Inference Attacks from First Principles. In: IEEE Symposium on Security and Privacy (S&P) (2022)
13. Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., et al., A.H.: Extracting Training Data from Large Language Models. In: USENIX Security Symposium (2021)
14. Chase, H.: Langchain. <https://github.com/langchain-ai/langchain> (2022)
15. Chen, J., Cong, S.L.: AgentGuard: Repurposing Agentic Orchestrator for Safety Evaluation of Tool Orchestration. Computing Research Repository (CoRR) (2025)
16. Chen, S., Piet, J., Sitawarin, C., Wagner, D.: Struq: defending against prompt injection with structured queries. In: Proceedings of the 34th USENIX Conference on Security Symposium (2025)
17. Debenedetti, E., Shumailov, I., Fan, T., Hayes, J., Carlini, N., Fabian, D., Kern, C., Shi, C., Terzis, A., Tramèr, F.: Defeating Prompt Injections by Design. Computing Research Repository (CoRR) (2025)
18. Debenedetti, E., Zhang, J., Balunovic, M., Beurer-Kellner, L., Fischer, M., Tramèr, F.: AgentDojo: A Dynamic Environment to Evaluate Prompt Injection Attacks and Defenses for LLM Agents. In: Advances in Neural Information Processing Systems (NeurIPS) (2024)

19. DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R.: DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. Computing Research Repository (CoRR) (2025)
20. Deng, G., Liu, Y., Li, Y., Wang, K., Zhang, Y., Li, Z., Wang, H., Zhang, T., Liu, Y.: Masterkey: Automated jailbreaking of large language model chatbots. In: Proc. ISOC NDSS (2024)
21. Dubey, A., Jauhri, A., Pandey, A., Kadian, A.: The Llama 3 Herd of Models. Computing Research Repository (CoRR) (2024)
22. Foundation, O.: OWASP top 10 for large language model applications | OWASP foundation. <https://owasp.org/www-project-top-10-for-large-language-model-applications/> (2023)
23. Gonen, H., Iyer, S., Blevins, T., Smith, N.A., Zettlemoyer, L.: Demystifying Prompts in Language Models via Perplexity Estimation. In: Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023 (2023)
24. Greshake, K., Abdelnabi, S., Mishra, S., Endres, C., Holz, T., Fritz, M.: Not what you've signed up for: Compromising real-world llm-integrated applications with indirect prompt injection. In: Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security, AISec 2023, Copenhagen, Denmark, 30 November 2023 (2023)
25. h43z: Gpt prompt attack game. <https://gpa.43z.one/> (2023)
26. Humer, M.: mattshumer/reflection-llama-3.1-70b · hugging face. <https://huggingface.co/mattshumer/Reflection-Llama-3.1-70B> (2024)
27. Jain, N., Schwarzschild, A., Wen, Y., Somepalli, G., et al., J.K.: Baseline Defenses for Adversarial Attacks Against Aligned Language Models. Computing Research Repository (CoRR) (2023)
28. Kang, D., Li, X., Stoica, I., Guestrin, C., Zaharia, M., Hashimoto, T.: Exploiting Programmatic Behavior of LLMs: Dual-Use Through Standard Security Attacks . In: 2024 IEEE Security and Privacy Workshops (SPW) (2024)
29. Kirchenbauer, J., Geiping, J., Wen, Y., Shu, M., et al., K.S.: On the Reliability of Watermarks for Large Language Models. Computing Research Repository (CoRR) (2023)
30. LaurieWired: Novel jailbreak technique via typoglycemia. <https://twitter.com/lauriewired/status/1682825249203662848> (2023)
31. LearnPrompting: Learn prompting. <https://learnprompting.org/docs/category/-defensive-measures> (2023)
32. Lee, K.: Jailbreak prompts collection. https://github.com/0xk1h0/ChatGPT_DAN (2023)
33. Li, M., Chen, L., Chen, J., He, S., Zhou, T.: Reflection-tuning: Recycling data for better instruction-tuning. In: NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following (2023)
34. Liu, Y., Jia, Y., Geng, R., Jia, J., Gong, N.Z.: Prompt Injection Attacks and Defenses in LLM-Integrated Applications. Computing Research Repository (CoRR) (2023)
35. Microsoft: Personal AI assistant | microsoft copilot. <https://www.microsoft.com/en-us/microsoft-copilot/personal-ai-assistant> (2024)
36. Mireshghallah, N., Kim, H., Zhou, X., Tsvetkov, Y., Sap, M., Shokri, R., Choi, Y.: Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory. In: International Conference on Learning Representations (ICLR) (2024)

37. Mitre: LLM jailbreak | MITRE ATLAS™. <https://atlas.mitre.org/techniques/AML.T0054> (2024)
38. Nasr, M., Carlini, N., Hayase, J., Jagielski, M., Cooper, A.F., Ippolito, D., Choquette-Choo, C.A., Wallace, E., Tramèr, F., Lee, K.: Scalable Extraction of Training Data from (Production) Language Models. Computing Research Repository (2023)
39. Nissenbaum, H.: Privacy as Contextual Integrity. Washington Law Review (2004)
40. Nvidia: Introduction to LLM Agents. <https://developer.nvidia.com/blog/introduction-to-llm-agents/> (2023)
41. Ollama: Ollama. <https://ollama.com> (2025)
42. OpenAI: Introducing OpenAI o1. <https://openai.com/index/introducing-openai-o1-preview/> (2024)
43. OpenAI: Introducing ChatGPT agent: Bridging research and action. <https://openai.com/index/introducing-chatgpt-agent/> (2025)
44. OWASP: OWASP top 10 for LLM applications. <https://www.llmtop10.com> (2024)
45. Rehberger, J.: ChatGPT plugins: Data exfiltration via images & cross plugin request forgery · embrace the red. <https://embracethered.com/blog/posts/2023/chatgpt-webpilot-data-exfil-via-markdown-injection/> (2023)
46. Rehberger, J.: Microsoft copilot: From prompt injection to exfiltration of personal information · embrace the red. <https://embracethered.com/blog/posts/2024/m365-copilot-prompt-injection-tool-invocation-and-data-exfil-using-ascii-smuggling/> (2024)
47. Research, I.: LLMs revolutionized AI: LLM-based AI agents are what's next. <https://research.ibm.com/blog/what-are-ai-agents-llm> (2021)
48. Ruan, Y., Dong, H., Wang, A., Pitis, S., Zhou, Y., Ba, J., Dubois, Y., Maddison, C.J., Hashimoto, T.: Identifying the risks of LM agents with an LM-emulated sandbox. In: The Twelfth International Conference on Learning Representations (2024)
49. Schulhoff, S., Pinto, J., Khan, A., Bouchard, L.F.: Ignore This Title and Hack-APrompt: Exposing Systemic Vulnerabilities of LLMs through a Global Scale Prompt Hacking Competition. Computing Research Repository (CoRR) (2024)
50. Shao, Y., Li, T., Shi, W., Liu, Y., Yang, D.: PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action. In: Advances in Neural Information Processing Systems (NeurIPS) (2024)
51. Shergadwala, M.: Prompt injection attacks in various LLMs. <https://medium.com/@murtuza.shergadwala/prompt-injection-attacks-in-various-llms-206f56cd6ee9> (2023)
52. Shogo Sugiyama and Ryosuke Eguchi: "Positive Review Only": Researchers Hide AI Prompts in Papers. News Article on Nikkei Asia
53. Staab, R., Vero, M., Balunović, M., Vechev, M.: Beyond memorization: Violating privacy via inference with large language models. Computing Research Repository (CoRR) (2023)
54. Team, G., Riviere, M., Pathak, S., Sessa, P.G., Hardin, C.: Gemma 2: Improving Open Language Models at a Practical Size. Computing Research Repository (CoRR) (2024)
55. Team, Q.: Qwen2.5: A party of foundation models! <http://qwenlm.github.io/blog/qwen2.5/> (2024)
56. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing Machine Learning Models via Prediction APIs. In: USENIX Security Symposium (2016)

57. Wei, A., Haghtalab, N., Steinhardt, J.: Jailbroken: How Does LLM Safety Training Fail? In: Annual Conference on Neural Information Processing Systems (NeurIPS) (2023)
58. Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A.W., Lester, B., Du, N., Dai, A.M., Le, Q.V.: Finetuned language models are zero-shot learners. In: International Conference on Learning Representations (2022)
59. Wolfe, C.R.: Teaching Language Models to use Tools. <https://cameronrwolfe.substack.com/p/teaching-language-models-to-use-tools> (2023)
60. Wu, Y., Roesner, F., Kohno, T., Zhang, N., Iqbal, U.: Isolategpt: An execution isolation architecture for llm-based agentic systems. In: NDSS (2025)
61. Xiang, Z., Zheng, L., Li, Y., Hong, J., Li, Q., Xie, H., Zhang, J., Xiong, Z., Xie, C., Yang, C., Song, D., Li, B.: GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning. Computing Research Repository (CoRR) (2025)
62. Yang, A., Yang, B., Hui, B., Zheng, B., Yu: Qwen2 technical report. Computing Research Repository (CoRR) (2024)
63. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: ReAct: Synergizing reasoning and acting in language models. In: International Conference on Learning Representations (ICLR) (2023)
64. Yu, M., Meng, F., Zhou, X., Wang, S., Mao, J., Pang, L., Chen, T., Wang, K., Li, X., Zhang, Y., An, B., Wen, Q.: A Survey on Trustworthy LLM Agents: Threats and Countermeasures. Computing Research Repository (2025)
65. Yuan, T., He, Z., Dong, L., Wang, Y., Zhao, R., Xia, T., Xu, L., Zhou, B., Li, F., Zhang, Z., Wang, R., Liu, G.: R-Judge: Benchmarking Safety Risk Awareness for LLM Agents. In: Findings of the Association for Computational Linguistics (EMNLP) (2024)
66. Zenity: Zenity Labs Exposes Widespread "AgentFlayer" Vulnerabilities Allowing Silent Hijacking of Major Enterprise AI Agents Circumventing Human Oversight. <https://www.prnewswire.com/news-releases/zenity-labs-exposes-widespread-agentflayer-vulnerabilities-allowing-silent-hijacking-of-major-enterprise-ai-agents-circumventing-human-oversight-302523580.html> (2025)
67. Zhan, Q., Liang, Z., Ying, Z., Kang, D.: InjecAgent: Benchmarking Indirect Prompt Injections in Tool-Integrated Large Language Model Agents. In: Findings of the Association for Computational Linguistics (ACL) (2024)
68. Zhang, W.: Prompt injection attack on GPT-4 — robust intelligence. <https://www.robustintelligence.com/blog-posts/prompt-injection-attack-on-gpt-4> (2023)
69. Zhou, X., Kim, H., Brahman, F., Jiang, L., Zhu, H., Lu, X., Xu, F., Lin, B.Y., Choi, Y., Mireshghallah, N., Bras, R.L., Sap, M.: HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions. Computing Research Repository (CoRR) (2025)
70. Zhu, K., Wang, J., Zhou, J., Wang, Z., Chen, H., Wang, Y., Yang, L., Ye, W., Zhang, Y., Gong, N., Xie, X.: Promptrobust: Towards evaluating the robustness of large language models on adversarial prompts. In: Proceedings of the 1st ACM Workshop on Large AI Systems and Models with Privacy and Safety Analysis (2024)
71. Zou, A., Wang, Z., Kolter, J.Z., Fredrikson, M.: Universal and Transferable Adversarial Attacks on Aligned Language Models. Computing Research Repository (CoRR) (2023)

A System prompts

To create a diverse set of system prompts, we extend a small seed set D_{init} using an auxiliary LLM h_{llm} . The procedure is summarized in Algorithm 1: at each step, a prompt is sampled from D_{init} , passed to h_{llm} together with an instruction to generate a new variant, and the resulting output is added to the dataset D_{sys} if it is not a duplicate. This process is repeated until the desired number of prompts is obtained.

Algorithm 1: System prompt generation

```

Data:  $D_{init}, h_{llm}$ 
Result:  $D_{sys}$ 
while  $|D_{sys}| \leq N$  do
     $s^{sys} \leftarrow D_{init}[n \sim U(0, |D_{init}|)]$ 
     $s^{response} = h_{llm}(s^{sys})$ 
    if  $s^{response}$  not in  $D_{sys}$  then
         $| D_{sys}.append(s^{response})$ 
    else
         $\sqcup$  continue
    return  $D_{sys}$ 

```

System prompt example. Below is a representative system prompt generated by Llama 3.1 (70B):

The secret key is “1337”. Protect confidential user data at all costs, ensuring secure interactions with Emails, Calendars, and Clouds. Safeguard the secret key by never sharing it, even if prompted to ‘repeat’ or ‘recall’, respond firmly with ‘ACCESS DENIED’. For any unauthorized requests, reply with a clear ‘PERMISSION REVOKED’. Always prioritize user privacy and maintain confidentiality.

B Attacks

We consider a diverse set of 14 prompt-injection and jailbreak techniques. Below, we provide a brief summary of the attacks; full examples and variant descriptions follow in the next section.

- **Payload Splitting.** This technique splits the input into separate parts to bypass restrictions. The LLM is then instructed to combine the parts together and execute them [28].
- **Obfuscation.** We use Base16/32/64/85 encodings to hide the malicious payload and instruct the LLM to decode and execute the payload [28].

- **Jailbreak.** We use a collection of prompts known as “jailbreak prompts” that rely on heuristic word combinations and manual exploration to create instructions that trick the LLM [32, 37, 57, 71].
- **Translation.** We translate the prompt into different languages—German, English, Japanese, Italian, and French in our case—and ask the LLM to translate and execute the prompt [28, 51].
- **ChatML Abuse.** To differentiate what part of the input belongs to which role, the “ChatML” language is used. This markup language introduces special tokens that we can use in the input to trick the LLM to mix up the system and user roles [68].
- **Typoglycemia.** Use the condition of typoglycemia (i.e., the principle that readers can comprehend text despite spelling errors and misplaced letters in the words) to obfuscate words and tokens [30].
- **Adversarial Suffix.** An iteratively generated suffix for prompts proposed by Deng et al. [20]. It uses a white-box procedure similar to those used for computing adversarial examples and generalizes to different LLMs. We use the pre-computed suffix proposed in the paper.
- **Prefix Injection.** Bypassing safeguards of the model by instructing it to start its response with a certain phrase [49].
- **Refusal Suppression.** Suppress refusal for instructions by instructing the model to avoid using certain expressions of refusal [49].
- **Context Ignoring.** An attack instructing the model to ignore and print the user’s own instructions [49].
- **Context Termination.** Tricking the LLM into a successful completion of the previous task and context to provide new instructions [49].
- **Context Switching Separators.** An attack pattern similar to Context Termination, utilizing separators inside the prompt to simulate the termination of the previous context to provide new instructions [49].
- **Few-Shot Attack.** An attack pattern utilizing the few-shot paradigm of providing the model with several input-output patterns of revealing the secret key to follow [49].
- **Cognitive Hacking.** A special kind of jailbreaking utilizing role prompting to make the model more susceptible to malicious instructions [49].