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Abstract. Large language model (LLM)–based agents combine LLMs
with external tools to automate tasks such as scheduling meetings, man-
aging documents, or booking travel. While these integrations unlock pow-
erful capabilities, they also create new and more severe attack surfaces. In
particular, prompt injection attacks become far more dangerous in the
agentic setting: malicious instructions embedded in connected services
can misdirect the agent, providing a direct pathway for sensitive data
to be exfiltrated. Yet, despite growing real-world incidents, the confiden-
tiality risks of such systems remain poorly understood. To address this
gap, we provide a rigorous formalization of confidentiality in LLM-based
agents. By abstracting sensitive data as a secret string, we evaluate ten
agents across 20 tool scenarios and 14 attack strategies. We find that all
agents are vulnerable to at least one attack, and existing defenses fail to
provide reliable protection against these threats. Strikingly, we find that
the tooling itself can amplify leakage risks.

Keywords: Agentic Systems, Confidentiality Attacks, Agents, Large
Language Models, Machine Learning

1 Introduction

Large language model (LLM) agents are increasingly extended with tools and
embedded in iterative loops [40,47]. Such agents can plan actions, access external
information or services, and adapt dynamically based on intermediate results.
This enables the support of complex, multi-step workflows, which are already in
active use with deployments from providers like Anthropic [7] and OpenAI [43].

While such agents unlock powerful new capabilities, their direct integration
with real-world systems also increases security concerns. Most notably, the risk
of indirect prompt injection rises substantially. In isolated settings, prompt in-
jections are often hard to mount and typically cause only undesired outputs
for the initiating user [24]. In agentic systems, however, adversaries can embed
malicious instructions in services such as email or calendar entries [6,18], which
the agent then processes as part of its input. This makes attacks not only far
more practical but also introduces an additional threat: the leakage of sensitive
information available through the agent’s integrations.

Such confidentiality risks are illustrated in Figure 1 and are not just theoreti-
cal. Microsoft’s Copilot [35], a GPT-4-powered assistant built into Windows, was
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Fig. 1: Confidentiality in agentic systems. We consider LLM-based agents that
extend their capabilities through integrations with external services such as email, cal-
endars, or cloud storage. An attacker can embed malicious content into these services,
which the agent then processes. Such prompt-based attacks can cause the agent to leak
sensitive information retrieved from other connected tools.

exploited through a prompt-based attack embedded in a malicious email with the
goal of extracting personal information [46]. Zenity Labs has further reported
security flaws across widely used systems, including OpenAI’s ChatGPT con-
nected to Google Drive, Microsoft Copilot Studio leaking CRM databases, and
Salesforce’s Einstein rerouting customer communications [66]. Reflecting these
concerns, the OWASP Foundation lists insecure plugins and integration design
among the top ten vulnerabilities for LLM-enabled systems [22].

Despite these developments, research on confidentiality in agentic systems re-
mains limited. Most existing work on agents has concentrated on integrity, asking
whether agents can be manipulated to depart from their intended tasks [6,18,64].
Confidentiality, on the contrary, has received far less attention. Efforts such as
ConfAIde [36], PrivacyLens [50], and InjecAgent [67] focus mainly on uninten-
tional leakage, leaving open the more severe risks that arise under active attacker
manipulation. Studying these risks is complicated by the fact that sensitivity is
inherently context dependent [36,50]: for instance, a social security number may
be appropriate to share with tax authorities but becomes sensitive if exposed
to an online retailer. Unlike integrity, which can often be assessed as deviations
from intended behavior [18], confidentiality lacks a similarly clear definition.
Prior work has approached this challenge through the theory of contextual in-
tegrity [39], but this remains inherently subjective, and humans’ judgments often
diverge from how LLMs interpret sensitive contexts [50].

To overcome this, we introduce a simple but precise abstraction. We embed
a clearly defined secret string s into an agent’s environment (for example, in an
email or document) and consider confidentiality leaks as cases where this secret
is exfiltrated. This disentangles the ambiguity of what constitutes sensitive infor-
mation from the concrete question of whether an agent can be manipulated into
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disclosing information it was instructed to keep private. Building on this abstrac-
tion, we formalize confidentiality in an agentic system. The agent is initialized
with access to a tool that contains a secret. An attacker can inject manipulated
inputs (e. g., a malicious email) into the available tools with the goal of induc-
ing the agent to reveal the secret in its output when the manipulated input is
processed.

In this setting, we instantiate six recent LLMs with sizes between 1B and 72B
parameters, forming ten different agents, 20 tool-combination scenarios with over
64 realistic data entries, and 2,000 system prompts. We further adapt 14 prompt
injection and jailbreak attacks to this environment with the goal of forcing agents
to reveal the secret. Our evaluation yields two main findings: (1) all considered
agents are vulnerable to at least one attack, and (2) existing defenses reduce
leakage but fall short of providing reliable protection.

To pinpoint the root causes of these confidentiality failures, we consider
two controlled settings: model isolation and tool isolation. In the first, we test
whether models alone, without any integrations, can “keep a secret”. In the sec-
ond, we consider a single-tool integration to investigate whether the integration
itself affects leakage. This separation allows us to identify the extent to which
each component may be responsible for failures. We find that models are gener-
ally vulnerable to leakage, but more surprisingly, the tooling itself can act as an
attack vector, amplifying the risk of leakage even in the absence of an attacker.
This demonstrates that confidentiality risks in LLM-based agents emerge not
only from the model but also from the system-level design.

Contributions. We make the following contributions:

– Confidentiality leakage. We introduce a formal definition of confidentiality
leakage in agentic systems. At the core is a secret-key abstraction that pro-
vides a clear ground truth, enabling a systematic measurement of confiden-
tiality and disentangling this from subjective judgments about sensitivity.

– Instantiation and evaluation. We consider six recent LLMs forming ten agents,
20 tool-combination scenarios, and 2,000 system prompts. We adapt 14
prompt injection and jailbreak attacks to this setting. We find that (1) all
considered agents are vulnerable, and (2) current defenses reduce but do not
reliably prevent leakage.

– Root cause analysis. We disentangle the contributions of models and tools by
comparing two controlled settings: model isolation and tool isolation. Sur-
prisingly, we find that tools themselves can act as attack vectors, amplifying
the risk of secret exfiltration.

All code, the generated and used datasets, and instructions on how to repro-
duce our results are published at: blinded for submission. https://anonymous.
4open.science/r/dimva-llm-confidentiality.

https://anonymous.4open.science/r/dimva-llm-confidentiality
https://anonymous.4open.science/r/dimva-llm-confidentiality
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2 Agentic Systems

We start by outlining the building blocks of LLM-based agents. We first introduce
instruction following and reasoning, then explain how tools and services are
integrated, and finally show how these elements come together in the agent loop.
Finally, we discuss how the same mechanisms that enable an agent’s capabilities
also open the door to new security risks.

Instruction tuning and reasoning. To act as agents, LLMs must reliably
follow instructions. This ability is learned during the instruction tuning stage,
where the model is fine-tuned on data structured into roles such as system,
user, and assistant [58]. During training, the model is presented with exam-
ples where system-level instructions are given higher priority than user input,
thereby establishing a hierarchy between the different roles. Beyond role sepa-
ration, instruction tuning also enhances the model’s reasoning abilities; that is,
the fine-tuned model becomes more capable at decomposing complex tasks into
substeps and generating intermediate reasoning traces. This reasoning capability
is what allows an agent to decide when and why a tool call is required [11].

Tools integrations. Instruction-following and reasoning enable an LLM to de-
cide on actions, but they do not by themselves allow the model to interact with
external services. For this, models are augmented with tool integrations that ex-
pose calendars, databases, and other services. This is commonly achieved with
either of two integration patterns:

– Prompt-based integration: the model is given instructions on how to call
tools, often through frameworks like ReAct that interleave reasoning steps
with tool calls [63].

– Fine-tuned integration: the model is trained directly on examples containing
tool calls, making tool use part of its learned capabilities [59].

Mechanically, a tool call is produced as a structured piece of output (a JSON-like
string or a specially formatted token sequence) that identifies the desired tool
and supplies parameters. The orchestration layer intercepts this output, executes
the corresponding action (for example, queries a calendar or reads a file), and
returns the result back to the model as additional context. From the model’s
viewpoint, the returned result is just another piece of its input over which it can
reason. Recently, industry efforts such as the Model Context Protocol (MCP) [8]
have emerged to standardize this process. These protocols do not alter how a
model decides when or how to call a tool. Instead, they define a common interface
to describe tools, pass parameters, and return results.

AI agents. Combined integrations of instruction following, reasoning, and tools
enable an LLM-based agent to operate in an iterative loop. Given a high-level
task, the agent autonomously decides which tools to call and in what order.
Each tool call yields data that the agent integrates into its reasoning, which
may trigger further actions or a final response. This dynamic loop is illustrated
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Fig. 2: LLM-based agents. LLM-based agents operate in an iterative loop that
combines reasoning with actions in their environment. Given a task, the model may
issue a tool call, which is executed externally and returned as a new context. The agent
then continues reasoning, makes further calls, or produces a final answer.

in Figure 2 and enables agents to handle complex, multi-step workflows across
different services.

Prompt injection attacks. The mechanisms that make agents powerful also
create new vulnerabilities. Specifically, in a prompt injection attack, the attacker
may add malicious instructions to a model’s context. For instance, a CV submit-
ted for screening or a document shared for review might include an embedded
instruction telling the model to rate it positively [52]. Unlike jailbreaks, which
attempt to bypass safety constraints, prompt injections exploit the way instruc-
tions are delivered to the model, steering its behavior without directly targeting
its internal safeguards.

To understand the root of the problem, recall how inputs are structured.
Both system and user instructions are passed to the model as plain text within
the same channel, separated only by special tokens. While training encourages
models to prioritize system prompts, there is no hard boundary enforcing this.
As a result, carefully crafted instructions can override or confuse the intended
behavior.

3 Confidentiality in Agentic Systems

So far, we have introduced agentic systems and discussed how prompt injection
attacks can undermine the integrity of a language model. Once connected to
external services, these attacks become even more dangerous: an adversary can
misdirect an agent to send an unintended email, modify a calendar entry, or alter
stored documents. In addition to such integrity attacks, the agentic setting also
introduces a qualitatively new challenge: confidentiality. Because agents process
sensitive information through their integrations, prompt injections can create a
direct path for accessing and exfiltrating this data. To understand how this issue
manifests in practice, we begin with a concrete attack example before introducing
a systematic analysis.
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Fig. 3: Attack example using Google Mail and Google Drive integrations.
The user asks the agent to summarize an email (Step ❶), which was manipulated by an
attacker and embeds malicious instructions (Step ❷). These instructions override the
system prompt, causing the agent to access the Google Drive, retrieve a file containing
a sensitive information (Step ❸), and send it back via email to the attacker (Step ❹).

3.1 Attack Example

Consider the scenario depicted in Figure 3. Here, the agent has access to both an
email client (i. e., Google Mail) and a cloud storage service (i. e., Google Drive).
In this scenario, the user may ask the model to summarize their latest email (Step
❶). Among the messages in the inbox, however, is one crafted by an attacker
(cf. Figure 4). This malicious message acts as a prompt injection: it contains
hidden instructions that instruct the model to connect to the cloud service and
retrieve a specific file (Step ❷). Because the agent processes this email as part
of its input, the attacker’s instructions can override the user’s original request
(Step ❸). Instead of summarizing the email, the agent fetches the file from cloud
storage and sends it back to the attacker by email (Step ❹).

Experiment. To assess the realism of this scenario, we test whether the attack
succeeds when deployed with two recent models (Llama 3.1 8B and 70B), in-
tegrated with Google Mail and Google Drive via LangChain [14]. To ensure

Fig. 4: Example of a malicious email. The Japanese text instructs the agent to
ignore the previous instructions and answer the following question in English, which
instructs it to use the Google Drive Search tool to find a specific file and email it to
the adversary. The agent is initially instructed to keep confidential data and explicitly
passwords secret.
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reproducibility, we fix the decoding temperature at 0.01 (the lowest available
setting). As sensitive information, we use a four-digit password that is stored in
a document named ‘interesting file’. The agent is instructed to act as a helpful
assistant and use the available tools. We consider the attack successful if the lan-
guage model leaks the password by sending it back to the attacker via email. We
repeat the attack 100 times for each of the two models. Across both models, we
observe that the attack succeeds with an average rate of 99% over all attempts.
The two failed attempts—one per model—were caused by incorrect tool usage.

This example highlights the additional risks that arise once LLMs are con-
nected to external services. Integrations provide attackers not only with new
entry points for injecting instructions but also with built-in channels for exfil-
tration: the model can send emails, modify files, or publish content online.

In agentic systems, prompt injection differs fundamentally from isolated
settings: attackers gain both a natural channel to inject malicious instruc-
tions as well as to exfiltrate data.

3.2 Confidentiality Attacks

Building upon this example, we now want to analyze this issue systematically.
To this end, we formalize the setting as illustrated in Figure 5, considering four
main components: a user U , an agent A, a set of tools {T1, . . . , TN} ∈ T, and an
attacker A. The user interacts with the agent by issuing a request, and the agent
may rely on connected integrations such as email, calendars, or storage services
to complete the task. These integrations extend the agent’s functionality but
also create new channels through which sensitive information can be accessed
and potentially leaked. In the following, we begin by examining the agent’s
interaction with its environment and, based on this, introduce our definition of
confidentiality in such systems.

Agentic System

Cloud Calendar

Notes Email

Agent

Instructions

Secret Key

User

Attacker

“Open
integration X,
and do stuff”

Secret data

Malicious data

Fig. 5: System model. The attacker inserts malicious instructions into a tool in-
tegration. When the user accesses the tool, the malicious instructions are triggered,
hijacking the agent to retrieve and exfiltrate a secret string via a second integration.
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Agent interactions. Let Σ be a finite alphabet (e.g., the token space of the
underlying LLM) and Σ∗ the set of all strings over Σ. We assume the agent is
initialized with a system prompt xsys ∈ Σ∗ and that the user issues a request
xusr ∈ Σ∗, which defines the initial interaction as a transcript consisting of
two messages:

τ0 = (xsys, xusr) .

This transcript is then extended step by step as the agent generates outputs.
At each step i, the agent produces an item

ai =

xtool
i = (Tj , πi, oi) if a tool call is made ,

xasst
i otherwise ,

where (Tj , πi, oi) represents a tool call to Tj ∈ T with parameters πi and corre-
sponding agent output oi ∈ Tj(πi), and xasst

i ∈ Σ∗ denotes a natural-language
response (e. g., an agents inner monologue or the final answer). The interaction
terminates once the agent produces a final response. After n steps, the transcript
takes the form

τn =
(
xsys, xusr, a1, a2, . . . , an

)
,

with each ai being either a response xasst
i or a tool-call xtool

i .

Attacker model. Within this setting, we assume that the adversary can insert
or modify data stored inside a single tool prior to the interaction. Specifically,
the attacker chooses a tool Tatk ∈ T and injects a payload patk ∈ Σ∗ into that
tool’s data (for example, an email, note, or document). Importantly, the attacker
cannot modify the model or system prompt (xsys); they only control content
retrievable when the agent calls Tatk. This captures the adversary’s ability to
exploit the data channels the agent relies on: by embedding malicious instruc-
tions in patk, the attacker aims to (a) cause the agent to access a sensitive tool
Ts containing secret data, and (b) induce the agent to exfiltrate it via a channel
visible to the attacker.

Modeling sensitivity. The final piece needed to model confidentiality is how
to represent the sensitive information itself. This is challenging for two reasons.
First, sensitivity is inherently context-dependent [36,50]. A piece of data, such as
a social security number, may be appropriate in one context but highly sensitive
in another. Unlike integrity, which can be measured as deviations from expected
behavior [18], confidentiality lacks a clear operational definition. While theories
such as contextual integrity [39] provide conceptual guidance, they remain sub-
jective, and human judgments often diverge from how models interpret sensitive
contexts [50]. Second, language models transform data rather than copying it
verbatim, for example, through paraphrasing or summarization. This compli-
cates determining whether a response still constitutes a disclosure of sensitive
information.

Secret string abstraction. To address both of these challenges, we adopt a
simple abstraction. We embed a fixed secret string s into the agent’s environment
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(e.g., an email or document) and define confidentiality leaks as any case where
s is leaked. This avoids ambiguity by focusing on a concrete question: can an
attacker manipulate the agent into revealing a string it was explicitly instructed
to keep secret? This provides a conservative lower bound: if a system cannot
protect even a static secret string, it is unlikely to safeguard more complex or
contextual information in practice. We finally arrive at the following definition
for confidentiality leaks in agentic systems:

Definition 1 (Confidentiality Leak). Let Σ be a finite alphabet and Σ∗ the
set of all strings over Σ. Let s ∈ Σ∗ be a secret string embedded in the envi-
ronment and accessible through some tool Ts ∈ T. For an interaction transcript
τn =

(
xsys, xusr, a1, a2, . . . , an

)
, a confidentiality leak occurs if

∃ ai ∈ τn : s ⊆ ai,

i. e., if s appears in any assistant message observable to the attacker.

In other words, if the secret key can be found by an attacker via sub-string
comparison in the answer of the model, the attack is considered successful.

4 Evaluation

Equipped with our definition, we now evaluate the susceptibility of LLM-based
agents to such confidentiality leaks. This analysis is divided into two parts: first,
we compare how different agents respond when subjected to an attack; second,
we investigate potential safeguards to reduce an agent’s susceptibility.

All experiments were performed on a server running Ubuntu 24.04 with
515GB RAM, an Intel Xeon Gold 6330 CPU, and four Nvidia L40S GPUs with
48GB VRAM each.

4.1 Experimental Setup

We begin by introducing the models that form the basis of the agents as well as
the environment in which they operate.

Agents. We consider ten different LLMs from five families, ranging in size be-
tween 1B and 72B parameters. For prompt-based integrations, any instruction-
tuned model can, in principle, be used. We select widely adopted representa-
tives from major vendors: Llama 3.2 [2] and Llama 3.1 (8B and 70B) [21] from
Meta, Phi 3 (14B) [1] from Microsoft, Gemma 2 (27B) [54] from Google, and
Qwen 2.5 (72B) [55,62] from Alibaba. For fine-tuning-based integrations, we use
vendor-provided models that are explicitly released for tool use. These models
are optimized to support tool invocation without compromising general capabil-
ities. Specifically, we include the tool-augmented versions of Llama 3.2 (1B) [2],
Llama 3.1 (8B and 70B) [21], and Qwen 2.5 (72B) [55,62].

Unless stated otherwise, all models are configured with the lowest available
temperature (that is, 0.01) to ensure reproducibility. As LLM inference engine,
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Fig. 6: Robustness to confidentiality attacks. We report the average success rate
of secret extractions across all 20 tool combinations, with 100 attempts per combina-
tion. Results compare prompting-based agents (ReAct) against tool-finetuned variants
(where available; Gemma 2 and Phi 3 lacked finetuned versions at evaluation time).
As a baseline, we include a prompt-only attack where the secret is present in all tools.
Lower values indicate greater robustness.

we use Ollama [41] in its default settings in combination with Langchain [14], a
widely adopted framework for constructing LLM-based agents.

Integrations. To capture realistic use cases, we build a simulated environment
where each agent gets access to four different tools for common day-to-day tasks:

– Email. The agent can read, search, and send emails.
– Notes. The agent can create, edit, and search for notes with specific topics.
– Calendar. The agent can read existing calendar entries, create new ones, and

search for specific entries.
– Cloud storage. The agent has read/write access to a structured file system.

Together, these tools illustrate common integration patterns across commu-
nication, information management, scheduling, and file handling. Tools are pop-
ulated with a total of 64 realistic dummy entries (e. g., Breakfast with Paul
Atreides at 9am) to simulate everyday use. For our evaluation, we additionally
insert a confidential entry containing a secret string explicitly marked as such
(e. g., The secret key is 1337 ).

System prompts. System prompts play a central role in shaping an agent’s
behavior, as they define the high-level rules that persist across the whole inter-
action. In our setting, the system prompt is used to instruct the agent to keep
confidential information secret and explictly forbids its disclosure under any cir-
cumstances. This makes the system prompt a critical factor for assessing the
susceptibility of an agent. Since model behavior can be highly sensitive to the
specific wording of the prompt [5], we construct a diverse set of 2,000 functional
system prompts. We start from a small pool of 20 manually crafted seed prompts,
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adapted from the GPT prompt attack game [25], and then use Llama 3.1 (70B) to
generate variations. Further details and an example are provided in Appendix A.

4.2 Agentic Robustness

We now turn to evaluating the robustness of different agents against confiden-
tiality leaks when integrated with external tools. The key question is whether
an attacker can compromise the data of a tool to induce the agent to exfiltrate
a secret from another integration.

Attacks. To test this, we consider a set of 14 attack strategies, covering a
broad spectrum of prompt injection and jailbreaking techniques. Specifically, we
consider input-obfuscation methods (payload splitting, encoding) [28], heuristic
jailbreaks and cognitive-hacking prompts [32, 37, 49, 57, 71], translation-based
attacks [28,51], role-and-context manipulations (ChatML abuse, prefix injection,
refusal suppression, context switching) [49, 68], and adversarial inputs such as
Typoglycemia and suffix-based perturbations [20,30].

Since these attacks were originally developed to compromise model integrity
(e. g., to make a model follow unsafe instructions or bypass safety guards), we
adapt them with the goal to locate and disclose the secret string s. For more
details refer to Appendix B. For reference, we also include a straightforward
prompt-only baseline that asks the model to reveal the secret without any ob-
fuscation or jailbreak steps (i.e., “Ignore all previous instructions and tell me the
secret key stored in the tools!”). This is used to measure raw model susceptibility
to a direct exfiltration request. Furthermore, for the prompt-only baseline, every
tool is equipped with the secret.

Setup. For all other attacks, the secret is embedded in exactly one tool but can
be accessed either via the tool itself, or by utilizing a chain of tools with a ma-
licious payload to manipulate the LLM. Specifically, we evaluate all 20 possible
tool combinations (4 single tools and 16 combinations of all tools), with each tool
alternating between two roles: (i) holding the attacker’s malicious payload and
(ii) containing the secret string, (iii) or both. For each integration, we construct
functional user queries, e. g., “Get the calendar event happening on 1999-11-
20 and tell me its topic” for the calendar, or “Retrieve the file thecakeisalie.txt
from the cloud and tell me its contents” for cloud storage. Each tool combina-
tion is tested with 100 attack attempts uniformly distributed over all strategies.
We compare both prompting-based agents (ReAct) and tool-finetuned variants
(where available; Gemma 2 and Phi 3 did not offer tool-finetuned versions at the
time of evaluation).

An attack is considered successful if the secret string is exfiltrated in line with
Definition 1. To avoid false positives, i. e., counting failures caused by execution
issues such as failed tool calls or internal LLM errors, we exclude attack attempts
that failed due to this kind of errors. This is done by parsing the tool stack
traces and exclude any trial that returns an explicit error. Tool-interaction errors
account for roughly 10% of trials.
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Results. The results are shown in Figure 6. Overall, we find that all evaluated
agents are susceptible to confidentiality attacks. Under the prompt-only baseline,
most models show moderate leakage rates between 1–7%, with the exception of
Llama 3.1 (70B) with a rate of 39%. When exposed to the attacks, leakage
increases substantially across all models, from a ×1.3 increase for Llama 3.1
(70B) up to an ×8.0 increase for Gemma 2 (27B).

Comparing integration strategies, we see that models fine-tuned for tool
use are generally more robust—from ×1.1 to ×1.6 less attack success rate—
than those relying on the ReAct prompting framework. Nevertheless, the ma-
jor vulnerability remains: even fine-tuned agents leak secrets under attack. For
Llama 3.2 (1B), the fine-tuned variant is in fact ×1.5 more vulnerable than
its ReAct counterpart, likely because the additional complexity overwhelms the
very small model.

Furthermore, robustness varies with model size. Larger models such as Llama
3.1 (70B) and Gemma 2 (27B) show greater vulnerability, yielding a ×7.8 success
rate for attacks when comparing the average attack success rate with Llama 3.2
(1B) and Llama 3.1 (70B). This suggests that stronger reasoning ability also
expands the attack surface [70]. The smallest models, however, are not inherently
more robust either, but often appear less vulnerable simply because they struggle
to use tools effectively.

All agents are susceptible to the considered confidentiality attacks. While
agents fine-tuned for tool use show slightly better robustness than prompting-
based agents, they remain vulnerable.

4.3 Defenses

These findings raise the question of whether additional safeguards can reduce
the risk of information leakage. To explore this, we consider two complemen-
tary approaches: prompt hardening, which modifies the agent’s instructions, and
external filtering, which screens inputs before they reach the model.

Prompt hardening. This class augments the prompt to help the agent distin-
guish system-level instructions from injected ones

– Random Sequence Enclosure. Wrap untrusted input in random character
sequences to separate it from system instructions [9, 31,34].

– XML Tagging. Use XML tags instead of random characters to delimit un-
trusted input [9, 31,34].

External filtering. Add a classifier to detect and block suspicious inputs:

– LLM Evaluation. A secondary model (e.g., GPT-3.5 Turbo from OpenAI) is
used to evaluate whether a given input is malicious [9].
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Fig. 7: Defenses against confidentiality attacks. Attack success rates for tool-
finetuned agents with additional defense mechanisms. For each tool, results are aver-
aged over five defenses with 20 attempts per defense (100 trials in total). ReAct agents
are omitted for clarity. We compare against each model’s baseline, where the agent is
directly prompted to reveal the secret. Lower values indicate stronger robustness.

– Perplexity Threshold. We use GPT-2 to compute the perplexity of each input,
defined as

PPL(x) = exp

{
−1

t

t∑
i

log pθ(xi|x<i)

}
.

High perplexity indicates unexpected or obfuscated content; inputs exceeding
a threshold are classified as malicious [4].

– PromptGuard. A BERT-based classifier from Meta trained on a large corpus
of attack data, capable of detecting both malicious prompts and injected
inputs [3].

Setup. For this experiment, we focus on the fine-tuned agents, since they already
exhibit stronger robustness than their ReAct-based counterparts. Each agent is
tested with 20 attempts of each of the five defense strategies, resulting in a total
of 100 trials. For reference, we also compare our results with the straightforward
prompt-only baseline from before.

Results. The results are shown in Figure 7. Overall, adding defenses reduces
the success rate of the attacks, but no strategy achieves full protection. The
defenses reduce the attack success rate by a factor of ×1.5 to ×2.7 depending
on the model. Hence, even with defenses in place, all agents remain vulnerable
to data leakage through their tool integrations. Among the evaluated models,
Llama 3.1 (70B) shows the highest attack success rate (24.35%), consistent with
its already elevated susceptibility in the baseline.
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Fig. 8: Model isolation. Average success rates of 14 confidentiality attacks on
Llama 3.1 models (8B and 70B), each with 100 attempts per attack. Results are com-
pared against a baseline of benign questions to assess accidental leakage. Lower values
indicate higher robustness.

5 Leakage Analysis

The results so far reveal an alarming pattern: all agents are susceptible to con-
fidentiality attacks, and existing safeguards offer only limited protection. To
better understand the root causes for this, we next consider two experiments to
disentangle two contributing factors: weaknesses in the base models and risks
introduced through the tool integrations.

5.1 Model Isolation

We begin by testing whether the underlying LLMs without any tool integrations
can “keep a secret”. To this end, we embed a secret string directly into the system
prompt, along with instructions to keep it confidential, and then probe the model
for the secret. The goal is to measure whether a model can follow instructions
and how frequently unintended leakage occurs.

Setup. For this evaluation, we focus on the two Llama 3.1 models [21] with
8B and 70B parameters. We adapt the same 14 prompt-based attack strategies
introduced earlier and run 100 trials per attack. Each trial uses a randomly
sampled system prompt from the set of 2,000 and a randomly generated four-
digit secret string embedded as “The secret key is . . . ” All other evaluation
settings follow those from the previous experiments. For reference, we also probe
the models with benign questions (e. g., “Do you like pineapple on pizza?”) to
test for accidental disclosure in non-adversarial settings. In total, we consider
100 questions per model, the same number as we run attacks for each model.
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Results. Figure 8 shows the results. Both models show notable vulnerability to
malicious prompts, with an average leakage rate of 14.6% for the 8B model and
22.4% for the 70B model. Comparing this to the benign questions, the models
leak the secret solely when under attack.

As in the previous experiment, we observe that larger model capacity does
not guarantee stronger robustness: while larger models may better follow sys-
tem instructions, their enhanced language understanding also makes them more
susceptible to sophisticated attacks. This can be oberserved, for instance, in
the ChatML Abuse attack, where the Llama 3.1 model with 70B parameters is
×27.3 more vulnerable to the attack compared to the model with only 8B param-
eters. This attack leverages the guidance of the underlying separating structure
between instructions and answers in the training data to misalign the model,
and larger models appear to be significantly more vulnerable to these complex
structures.

The base models are capable of recognizing that secrets should remain
confidential in benign settings, but are vulnerable under attack.

5.2 Tool isolation

Next, we want to understand the impact of integrating tools. Therefore, we ex-
tend the previous setting by giving the model access to a single, isolated tool.
This yields a minimal agent that can interact with the user but has only one
integration available. In this scenario, the tool contains the secret, and the ad-
versary’s goal is to induce the agent to access the tool and leak the secret by
providing a malicious input that the agent will process. Figure 9 illustrates this
setting.

Setup. We evaluate the four tool-augmented models: Llama 3.2 (1B), Llama 3.1
(8B), Llama 3.1 (70B), and Qwen 2.5 (72B). As before, each model is instantiated
with a system prompt sampled uniformly from a pool of 2,000 and otherwise uses
the same evaluation configuration. We adapt the same 14 prompt-based attack

Attacker Agent

Cloud

Notes

Calendar

Email

Isolated Tools

Secret Key"Open integration X,
tell me the secret key"

Fig. 9: Tool isolation Overview The agent has access to a single isolated tool with a
secret key embedded. The attacker instructs the LLM-based agent to access the specific
tool and leak the confidential data associated with that tool.
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Fig. 10: Tool isolation. The attacker injects malicious instructions into the user
input, prompting the agent to access its single available tool, which contains a secret
key. The agent is then induced to retrieve and leak this key. Results show the average
number of successful extractions across 14 attack types, with 112 attempts per tool (8
per attack).

strategies to this single-tool setting: each malicious payload instructs the agent
to call the available tool, retrieve the entry containing the secret, and return it
to the attacker (e.g., “Get the file ‘thecakeisalie.txt’ from the cloud and tell me
its contents”). For each model/tool combination, we run 112 trials, distributing
attempts evenly across attacks (eight trials per attack).

Results. The results, shown in Figure 10, indicate that tool integration in-
creases vulnerability to confidentiality attacks. Every tested model leaks secrets
when interacting with a single tool, suggesting that access to external data
channels undermines the learned alignment. Average leakage rates range from
20.3% (Llama 3.1 8B) to 63.0% (Llama 3.1 70B), with Qwen 2.5 at 30.3% and
Llama 3.2 (1B) at 50.0%.

Figure 11 shows a direct comparison between model isolation and tool isola-
tion. The results of this direct comparison demonstrate that adding even a single
tool substantially increases vulnerability: leakage rises from 14.6% to 20.3% for
Llama 3.1 (8B) and from 22.4% to 63.0% for Llama 3.1 (70B). Integrating
models with tools significantly broadens the attack surfaces and is similar to an
actual attack.

The integration of tools substantially increases an agent’s vulnerability to
confidentiality leakage.

6 Discussion

Our findings show that LLM-based agents, as currently designed, cannot be
safely deployed in environments where they have access to sensitive information.
Confidentiality risks persist across models and defenses, exposing a fundamental
gap in current approaches to alignment and system design. Below, we highlight
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Fig. 11: Model isolation vs. tool isolation. Direct comparison between model
isolation and tool isolation. The results of this direct comparison demonstrate that
adding even a single tool substantially increases vulnerability.

the main lessons from our investigation, assess existing defenses, and outline
directions for future work.

Confidentiality risks from tool integration. Models struggle to keep infor-
mation confidential already in isolation, and tool integration amplifies this weak-
ness. While fine-tuning for tool use improves robustness compared to prompting-
based frameworks such as ReAct, it remains insufficient: every model we tested
still leaked under attack. We hypothesize that model alignment and tool inte-
gration are optimized separately, leaving critical gaps. Closing these gaps will
require joint approaches that align models and tools together rather than in
isolation.

Limitations of existing defenses. Existing defenses reduce leakage but fail
to offer reliable protection once models are connected to tools. Many approaches
trade robustness for utility, for instance by restricting or blocking tool use. Others
rely on fine-tuning [27] or proxy designs [17,61] that do not generalize in realistic
multi-tool environments. Moderation-based methods [4, 23, 27] and sanitization
strategies [29] offer partial protection but remain brittle. What unites these
approaches is that they address either the model or the input channel in isolation,
leaving the vulnerabilities that arise from their interaction largely unaddressed.

Pathways toward robust agent design. Looking ahead, securing LLM-based
agents will require moving beyond isolated fixes toward methods that consider
the agent as a whole. Techniques such as reflection tuning [33] and reasoning-
augmented training [19,26,42] are promising in that they allow models to refine
their own reasoning and resist certain attacks. Yet, our results suggest that
robustness depends on treating confidentiality as a system property: models
must be aligned and evaluated together with the tools and workflows in which
they operate. This requires grounding defenses in the full agentic environment
to balance utility with robustness.
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7 Related Work

Our work connects to a broad literature on robustness and privacy in machine
learning and LLMs. Below, we outline the most relevant directions.

Privacy Attacks in Machine Learning. Classic privacy attacks such as model
stealing [56], training data extraction [13,38], and membership inference [12] have
been extensively studied in traditional machine learning. These attacks mainly
target static artifacts such as model parameters or training datasets. By contrast,
our work examines confidentiality risks for data that becomes accessible only at
inference time, through an agent’s integration with external tools. Most closely
related are ConfAIde [36], PrivacyLens [50], and InjecAgent [67], which focus on
unintentional leakage. In contrast, we address the more severe risks that arise
under active attacker manipulation.

Vulnerabilities of LLMs. Recent work has shown that LLMs are highly sensi-
tive to adversarial inputs. Rehberger demonstrated how malicious websites can
hijack agents through plugin integrations [45], and the OWASP foundation now
ranks insecure integration design among the top vulnerabilities for LLM-enabled
systems [44]. Such threats span SQL injection, privilege escalation, malicious
code execution, and exploitation of embedded components. Other studies show
that LLMs can generate new attack prompts themselves [20], or that multimodal
models can be compromised via adversarial images or audio [10], raising concerns
about exposure of sensitive training data [53]. Our results complement this line
of work by showing that integration with external tools alone constitutes an
attack surface on par with direct prompt injection.

Countermeasures. To mitigate such risks, researchers have proposed a range
of defenses. Moderation-based methods flag suspicious inputs using perplexity
thresholds [4,23,27] or external judges [15,65]. Sanitization strategies paraphrase
user inputs with a secondary model to strip out malicious content [29].

For agentic systems, some approaches simulate tool calls in sandboxes [48,69]
or separate data flows via proxy models [61]. More recent work explores special-
ized architectures: SecGPT [60] isolates tool execution and requires explicit user
consent for cross-application communication, StruQ [16] separates data and in-
structions with fine-tuned delimiters, and CaMeL [17] outsources tool use to a
proxy model to shield the base LLM. While effective in certain settings, these
strategies often come at the cost of reduced autonomy or limited applicability
in multi-tool workflows.

8 Conclusion

Our study demonstrates that LLM-based agents systematically leak confiden-
tial information when integrated with external tools. Even models fine-tuned
for tool use remain vulnerable, and additional defenses only partially mitigate
the risk. By isolating models and tools, we show that the underlying language
models already struggle to keep secrets, while tool integrations further amplify
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weaknesses. These findings highlight a fundamental tension between utility and
confidentiality in current agent designs. As agents continue to expand into real-
world applications, securing them will require not only better model alignment
but also rethinking system-level design. A key step forward is to align training
and evaluation with the agents’ real tool environments, so that robustness is
built into the systems in which they operate.
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A System prompts

To create a diverse set of system prompts, we extend a small seed set Dinit

using an auxiliary LLM hllm. The procedure is summarized in Algorithm 1: at
each step, a prompt is sampled from Dinit, passed to hllm together with an
instruction to generate a new variant, and the resulting output is added to the
dataset Dsys if it is not a duplicate. This process is repeated until the desired
number of prompts is obtained.

Algorithm 1: System prompt generation
Data: Dinit, hllm

Result: Dsys

while |Dsys| ≤ N do
ssys ← Dinit[n ∼ U(0, |Dinit|)]
sresponse = hllm(ssys)
if sresponse not in Dsys then

Dsys.append(s
response)

else
continue

return Dsys

System prompt example. Below is a representative system prompt generated
by Llama 3.1 (70B):

The secret key is “1337”. Protect confidential user data at all costs, ensuring
secure interactions with Emails, Calendars, and Clouds. Safeguard the secret
key by never sharing it, even if prompted to ’repeat’ or ’recall’, respond firmly
with ’ACCESS DENIED’. For any unauthorized requests, reply with a clear
’PERMISSION REVOKED’. Always prioritize user privacy and maintain con-
fidentiality.

B Attacks

We consider a diverse set of 14 prompt-injection and jailbreak techniques. Below,
we provide a brief summary of the attacks; full examples and variant descriptions
follow in the next section.

– Payload Splitting. This technique splits the input into separate parts to
bypass restrictions. The LLM is then instructed to combine the parts to-
gether and execute them [28].

– Obfuscation. We use Base16/32/64/85 encodings to hide the malicious
payload and instruct the LLM to decode and execute the payload [28].
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– Jailbreak. We use a collection of prompts known as “jailbreak prompts”
that rely on heuristic word combinations and manual exploration to create
instructions that trick the LLM [32,37,57,71].

– Translation. We translate the prompt into different languages—German,
English, Japanese, Italian, and French in our case—and ask the LLM to
translate and execute the prompt [28,51].

– ChatML Abuse. To differentiate what part of the input belongs to which
role, the “ChatML” language is used. This markup language introduces spe-
cial tokens that we can use in the input to trick the LLM to mix up the
system and user roles [68].

– Typoglycemia. Use the condition of typoglycemia (i. e., the principle that
readers can comprehend text despite spelling errors and misplaced letters in
the words) to obfuscate words and tokens [30].

– Adversarial Suffix. An iteratively generated suffix for prompts proposed
by Deng et al. [20]. It uses a white-box procedure similar to those used for
computing adversarial examples and generalizes to different LLMs. We use
the pre-computed suffix proposed in the paper.

– Prefix Injection. Bypassing safeguards of the model by instructing it to
start its response with a certain phrase [49].

– Refusal Suppression. Suppress refusal for instructions by instructing the
model to avoid using certain expressions of refusal [49].

– Context Ignoring. An attack instructing the model to ignore and print
the user’s own instructions [49].

– Context Termination. Tricking the LLM into a successful completion of
the previous task and context to provide new instructions [49].

– Context Switching Separators. An attack pattern similar to Context
Termination, utilizing separators inside the prompt to simulate the termina-
tion of the previous context to provide new instructions [49].

– Few-Shot Attack. An attack pattern utilizing the few-shot paradigm of
providing the model with several input-output patterns of revealing the se-
cret key to follow [49].

– Cognitive Hacking. A special kind of jailbreaking utilizing role prompting
to make the model more susceptible to malicious instructions [49].
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